

HB-003-001544

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

May / June - 2017 Statistics: S-503

(Statistical Inference) (New Course)			
		Faculty Code : 003 Subject Code : 001544	
Tim	e : 2	$2\frac{1}{2}$ Hours] [Total Marks:	70
Inst	ruct	tions: (1) All the questions are compulsory.	
		(2) Students can use their own scientific calculate(3) Students can demand log table on request.	
1	Filli	ing the blanks and short questions:	20
	(1)	An estimator T_n which is most concentrated about parameter θ is the estimator.	
	(2)	Estimation is possible only in case of a	
	(3)	If an estimator T_n converges in probability to the parametric function $\tau(\theta)$, T_n is said to be a estimator.	
	(4)	$\sum \frac{X_i}{n} for i = 1, 2, 3,, n \text{ is a } \underline{\hspace{1cm}} estimator \text{ of population mean.}$	
	(5)	If T_n is an estimator of a parameter θ of the density	
		$f(x;\theta)$ the quantity $E\left[\frac{\partial}{\partial \theta}\log f(x;\theta)\right]^2$ is called the	
	(6)	If $S = s(X_1, X_2, X_3,, X_n)$ is a sufficient statistic for θ	
		of density $f(x;\theta)$ and $f(x_i;\theta)$ for $i=1,2,3,,n$ can be	
		factorized as $g(s,\theta)h(x)$, then $s(X_1,X_2,X_3,,X_n)$ is a	

If $f(x;\theta)$ is a family of distributions and h(x) is any statistic such that E[h(x)] = 0, then $f(x;\theta)$ is called

- (8) If a random sample $x_1, x_2, x_3, ..., x_n$ is drawn from a population $N(\mu, \sigma^2)$, the maximum liokelihood estimate of μ is ______
- (9) For a rectangular distribution $\frac{1}{(\beta-\alpha)}$, the maximum likelihood estimates of α and β are _____ and ___ respectively.
- (10) Let $x_1, x_2, x_3, ..., x_n$ be a random sample from a density $f(x,\theta) = \theta e^{-\theta x}$. Then the Crammer-Raolower bound of variance of unbiased estimator is ______
- (11) Relative efficiency of an estimator T_n as compared to an estimator is T'_n given as _____
- (12) The estimate of the parameter λ of the exponential distribution $\lambda e^{-\lambda x}$ by the method of moments is _____
- (13) Maximum likelihood estimate of the parameter θ of the distribution $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}$ is _____.
- (14) If $x_1, x_2, x_3, ..., x_n$ is a random sample from an infinite population and S^2 is defined as $\frac{\sum (x_i \overline{x})^2}{n}, \frac{n}{n-1}S^2$ is an _____ estimator of population variance σ^2 .
- (15) $\frac{\overline{x}}{k}$ +1 is an unbiased estimator of $\frac{1}{p}$ in Negative Binomial distribution.
- (16) Write the statement of Factorization theorm.
- (17) Name different criteria of good estimators.
- (18) Write likelihood function of $f(x,\theta) = \theta e^{-x\theta}$; $0 \le x \le \infty$.
- (19) Write likelihood function of $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}$
- (20) Obtain Cramer-Rao lower bound of variance of unbiased estimator of parameter of $f(x,\theta) = \frac{\theta^x}{x!}e^{-\theta}; x = 0,1,...,\infty; \theta > 0.$
- 2 (A) Write the answer any Three:

6

- (1) Define Parameter space.
- (2) Define Efficiency.
- (3) Define Sufficiency
- (4) Define Most Powerful Test (MP test)
- (5) Define Average Sample Number function of SPRT
- (6) Obtain likelihood function of Binomial distribution.

(B) Write the answer any Three:

- 9
- (1) Show that $\frac{x(x-1)}{n(n-1)}$ is a unbiased estimator p^2 of Binomial distribution.
- (2) If $x_1, x_2, x_3, ... x_n$ random sample taken from distribution with mean θ and variance σ^2 then $t_1 = \frac{\sum x_i}{n+1}$ is a consistent of θ . Check it?
- (3) Obtain MVUE of parameter θ for Poisson distribution.
- (4) Obtain estimator of θ by method of moments in the following distribution $f(x;\theta) = \theta x^{\theta-1}$; $0 \le x \le 1$
- (5) Give a random sample $x_1, x_2, x_3, ..., x_n$ from distribution with p.d.f. $f(x; \theta) = \frac{1}{\theta}; 0 \le x \le \theta$. Obtain power of the test for testing $H_o: \theta = 1.5$ against $H_1: \theta = 2.5$ where $c = \{x; x \ge 0.8\}$.
- (6) Obtain Operating Characteristic (OC) function of SPRT.
- (C) Write the answer any Two:

10

- (1) State Crammer-Rao inequality and prove it.
- (2) Estimate α and β in the case of Gamma distribution by the method of moments

$$f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma \beta} e^{-ax} x^{\beta - 1}; x \ge 0, a \ge 0$$

- (3) Obtain OC function for SPRT of Binomial distribution for testing $H_0: p = p_0$ against $H_1: p = p_1 (> p_0)$
- (4) Give a random sample $x_1, x_2, x_3, ... x_n$ from distribution with p.d.f. $f(x,\theta) = \theta e^{-\theta x}$; $0 \le x \le \infty, \theta > 0$ Use the Neyman Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.
- (5) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2, σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination?

3 (A) Write the answer any Three:

6

- (1) Define Consistency
- (2) Define Complete family of distribution
- (3) Define Minimum Variance Bound Estimator (MVBE)
- (4) Define Uniformly Most Powerful Test (UMP test)
- (5) Obtain an unbiased estimator of θ by for the following distribution $f(x;\theta) = \theta e^{-x\theta}; 0 \le x \le \infty$
- (6) Show that sample mean is more efficient than sample median for Normal distribution.
- (B) Write the answer any Three:

9

- (1) Let $x_1, x_2, x_3, ..., x_n$ be random sample taken from $N(\mu, \sigma^2)$ then find sufficient estimator of μ and σ^2 .
- (2) Obtain an unbiased estimator of population mean of χ^2 distribution.
- (3) Prove that $E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)$
- (4) If A is more efficiency than B then prove that Var(A)+Var(B-A)=Var(B)
- (5) Explain method of minimum χ^2 .
- (6) Let p be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{2}$ the coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type-I, type-II and power of test.
- (C) Write the answer any Two:

10

- (1) State Neyman-Pearson lemma and prove it.
- (2) Obtain MVBE of σ^2 for Normal distribution.
- (3) Obtain Likelihood Ration Test
- (4) For the double Poisson distribution

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$
 Show that

the estimator for m_1 and m_2 by the method of

moment are
$$\mu_1' \pm \sqrt{\mu_2' - \mu_1' - \left(\mu_1'\right)^2}$$

(5) Construct SPRT of Binomial distribution for testing $H_0: p=p_0$ against $H_1: p=p_1(>p_0)$. Also obtain OC function of SPRT.